
Open in Colab

This series aims to demystify embeddings and show you how to use them in your projects. This �rst

blog post will teach you how to use and scale up open-source embedding models. We’ll look into the

criteria for picking an existing model, current evaluation methods, and the state of the ecosystem. We’ll

look into three exciting applications:

• Finding the most similar Quora or StackOver�ow questions

• Given a huge dataset, �nd the most similar items

• Running search embedding models directly in the users’ browser (no server required)

You can either read the content here or execute it in Google Colab by clicking the badge at the top of

the page. Let’s dive into embeddings!

The TL;DR

You keep reading about “embeddings this” and “embeddings that”, but you might still not know exactly

what they are. You are not alone! Even if you have a vague idea of what embeddings are, you might use

them through a black-box API without really understanding what’s going on under the hood. This is a

problem because the current state of open-source embedding models is very strong - they are pretty

easy to deploy, small (and hence cheap to host), and outperform many closed-source models.

An embedding represents information as a vector of numbers (think of it as a list!). For example, we can

obtain the embedding of a word, a sentence, a document, an image, an audio �le, etc. Given the

sentence “Today is a sunny day”, we can obtain its embedding, which would be a vector of a speci�c size,

such as 384 numbers (such vector could look like [0.32, 0.42, 0.15, …, 0.72]). What is interesting is that

the embeddings capture the semantic meaning of the information. For example, embedding the

sentence “Today is a sunny day” will be very similar to that of the sentence “The weather is nice today”.

Even if the words are different, the meaning is similar, and the embeddings will re�ect that.

If you’re not sure what words such as “vector”, “semantic similarity”, the vector size, or “pretrained” mean,

don’t worry! We’ll explain them in the following sections. Focus on the high-level understanding �rst.

So, this vector captures the semantic meaning of the information, making it easier to compare to each

other. For example, we can use embeddings to �nd similar questions in Quora or StackOver�ow, search

code, �nd similar images, etc. Let’s look into some code!

We’ll use Sentence Transformers, an open-source library that makes it easy to use pre-trained

embedding models. In particular, ST allows us to turn sentences into embeddings quickly. Let’s run an
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embedding models. In particular, ST allows us to turn sentences into embeddings quickly. Let’s run an

example and then discuss how it works under the hood.

Let’s begin by installing the library:

The second step is to load an existing model. We’ll start using all-MiniLM-L6-v2. It’s not the best open-

source embedding model, but it’s quite popular and very small (23 million parameters), which means we

can get started with it very quickly.

Now that we loaded a model, let’s use it to encode some sentences. We can use the encode  method to

obtain the embeddings of a list of sentences. Let’s try it out!

(3, 384)

all-MiniLM-L6-v2 creates embeddings of 384 values. We obtain three embeddings, one for each

sentence. Think of embeddings  as a “database” of embeddings. Given a new sentence, how can we �nd

the most similar sentence? We can use the util.pytorch_cos_sim  method to compute the cosine

similarity (we’ll talk more about it soon) between the new sentence embedding and all the embeddings

in the database. The cosine similarity is a number between 0 and 1 that indicates how similar two

embeddings are. A value of 1 means that the embeddings are identical, while 0 means that the

embeddings are entirely different. Let’s try it out!

tensor([[0.7344]]) The weather today is beautiful

tensor([[0.4180]]) It's raining!

tensor([[0.1060]]) Dogs are awesome

What can we interpret of this? Although “today is a sunny day” and “the weather today is beautiful”

don’t have the same words, the embeddings can capture some semantic meaning, so the cosine

similarity is relatively high. On the other hand, “Dogs are awesome”, although true, has nothing to do

with the weather or today; hence, the cosine similarity is very low.

To expand on this idea of similar embeddings, let’s look into how they could be used in a product.

Imagine that U.S. Social Security would like to allow users to write Medicare-related questions in an

input �eld. This topic is very sensitive, and we likely don’t want a model to hallucinate with something

unrelated! Instead, we can leverage a database of questions (in this case, there’s an existing Medicare

!pip install sentence_transformers

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

from sentence_transformers import util

sentences = ["The weather today is beautiful", "It's raining!", "Dogs are awesome"

embeddings = model.encode(sentences)

embeddings.shape

first_embedding = model.encode("Today is a sunny day")

for embedding, sentence in zip(embeddings, sentences):

    similarity = util.pytorch_cos_sim(first_embedding, embedding)

print(similarity, sentence)

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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unrelated! Instead, we can leverage a database of questions (in this case, there’s an existing Medicare

FAQ). The process is similar to the above”

1. We have a corpus (collection) of questions and answers.

2. We compute the embeddings of all the questions.

3. Given a new question, we compute its embedding.

4. We compute the cosine similarity between the new question embedding and all the embeddings in

the database.

5. We return the most similar question (which is associated with the most similar embedding).

Steps 1 and 2 can be done of�ine (that is, we compute the embeddings only once and store them). The

rest of the steps can be done at search time (each time a user asks a question). Let’s see what this would

look like in code.

Let’s �rst create our map of frequently asked questions.

Once again, we use the encode  method to obtain the embeddings of all the questions.

(5, 384)

Once a user asks a question, we obtain its embedding. We usually refer to this embedding as the query

embedding.

Representation of embeddings in two dimensions

# Data from https://faq.ssa.gov/en-US/topic/?id=CAT-01092

faq = {

"How do I get a replacement Medicare card?": "If your Medicare card was lost, stolen, or 

"How do I sign up for Medicare?": "If you already get Social Security benefits, you do no

"What are Medicare late enrollment penalties?": "In most cases, if you don’t sign up for 

"Will my Medicare premiums be higher because of my higher income?": "Some people with hig

"What is Medicare and who can get it?": "Medicare is a health insurance program for peopl

}

corpus_embeddings = model.encode(list(faq.keys()))

print(corpus_embeddings.shape)

https://huggingface.co/spaces/sentence-transformers/embeddings-semantic-search
https://huggingface.co/spaces/sentence-transformers/embeddings-semantic-search


embedding.

(384,)

We can now compute the similarity between the corpus embeddings and the query embedding. We

could have a loop and use util.pytorch.cos_sim  as we did before, but Sentence Transformers

provides an even friendlier method called semantic_search  that does all the work for us. It returns

the top-k most similar embeddings and their similarity score. Let’s try it out!

[[{'corpus_id': 3, 'score': 0.35796287655830383},

  {'corpus_id': 2, 'score': 0.2787758708000183},

  {'corpus_id': 1, 'score': 0.15840476751327515}]]

Let’s now look at which questions and answers this corresponds to:

Top 1 question (p=0.35796287655830383): Will my Medicare premiums be higher 

because of my higher income?

Answer: Some people with higher income may pay a larger percentage of their 

monthly Medicare Part B and prescription drug costs based on their income. We call 

the additional amount the income-related monthly adjustment amount.

Top 2 question (p=0.2787758708000183): What are Medicare late enrollment 

penalties?

Answer: In most cases, if you don’t sign up for Medicare when you’re first 

eligible, you may have to pay a higher monthly premium. Find more information at 

https://faq.ssa.gov/en-us/Topic/article/KA-02995

Top 3 question (p=0.15840476751327515): How do I sign up for Medicare?

Answer: If you already get Social Security benefits, you do not need to sign up 

for Medicare. We will automatically enroll you in Original Medicare (Part A and 

Part B) when you become eligible. We will mail you the information a few months 

before you become eligible.

Great, so given the question “Do I need to pay more after a raise?”, we know that the most similar

question is “Will my Medicare premiums be higher because of my higher income?” and hence we can

return the provided answer. In practice, you would likely have thousands to millions of embeddings, but

this was a simple yet powerful example of how embeddings can be used to �nd similar questions.

Now that we better understand what embeddings are and how they can be used, let’s do a deeper dive

into them!

From word embeddings to sentence embeddings

user_question = "Do I need to pay more after a raise?"

query_embedding = model.encode(user_question)

query_embedding.shape

similarities = util.semantic_search(query_embedding, corpus_embeddings, top_k

similarities

for i, result in enumerate(similarities[0]):

    corpus_id = result["corpus_id"]

    score = result["score"]

print(f"Top {i+1} question (p={score}): {list(faq.keys())[corpus_id]}")

print(f"Answer: {list(faq.values())[corpus_id]}")
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It’s time to take a step back and learn more about embeddings and why they are needed. Neural

networks, such as BERT, are not able to process words directly; they need numbers. And the way to

provide words is to represent them as vectors, also called word embeddings.

In the traditional setup, you de�ne a vocabulary (which words are allowed), and then each word in this

vocabulary has an assigned embedding. Words not in the vocabulary are mapped to a special token,

usually called (a standard placeholder for words not found during training). For example, let’s say we

have a vocabulary of three words, and we assign each word a vector of size �ve. We could have the

following embeddings:

Word Embedding

king [0.15, 0.2, 0.2, 0.3, 0.5]

queen [0.12, 0.1, 0.19, 0.3, 0.47]

potato [0.13, 0.4, 0.1, 0.15, 0.01]

<UNK> [0.01, 0.02, 0.01, 0.4, 0.11]

The embedding I wrote above are numbers that I wrote somewhat randomly. In practice, the

embeddings are learned. This is the main idea of methods such as Word2Vec and GloVe. They learn the

embeddings of the words in a corpus in such a way that words that appear in similar contexts have

similar embeddings. For example, the embeddings of “king” and “queen” are similar because they

appear in similar contexts.

Some open-source libraries, such as Gensim and fastText, allow you to obtain pre-trained Word2Vec

and GloVe embeddings quickly. In the good ol’ days of NLP (2013), people used these models to

compute word embeddings, which were helpful as inputs to other models. For example, you can

compute the word embeddings of each word in a sentence and then pass that as input to a sci-kit learn

Word2Vec and GloVe

Word embeddings

https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec
https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://huggingface.co/spaces/sentence-transformers/embeddings-semantic-search
https://huggingface.co/spaces/sentence-transformers/embeddings-semantic-search
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classi�er to classify the sentiment of the sentence.

Glove and Word2Vec have �xed representations. Once they are trained, each word is assigned a �xed

vector representation, regardless of their context (so “bank” in “river bank” and “savings bank” would

have the same embedding). Word2vec and GloVe will struggle with words that have multiple

meanings.

Understanding the details of word2vec and GloVe is unnecessary to understand the rest of the blog post and

sentence embeddings, so I’ll skip them. I recommend reading this chapter from the excellent interactive NLP

course if you’re interested.

As a TL;DR

• Word2Vec is trained by passing a very large corpus and training a shallow neural network to predict the

surrounding words. Later alternatives predict the center word given the surrounding words.

• GloVe is trained by looking at the co-occurrence matrix of words (how often words appear together

within a certain distance) and then using that matrix to obtain the embeddings.

Word2Vec and GloVe are trained with objectives that ensure that words appearing in similar contexts have

similar embeddings.

More recently, with the advent of transformers, we have new ways to compute embeddings. The

The good ol’ days of NLP

Word Embeddings with Transformers

https://lena-voita.github.io/nlp_course/word_embeddings.html
https://lena-voita.github.io/nlp_course/word_embeddings.html
https://lena-voita.github.io/nlp_course/word_embeddings.html
https://lena-voita.github.io/nlp_course/word_embeddings.html
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embedding is also learned, but instead of training an embedding model and then another model for the

speci�c task, transformers learn useful embeddings in the context of their task. For example, BERT, a

popular transformer model, learns word embeddings in the context of masked language modeling

(predicting which word to �ll in the blank) and next sentence prediction (whether sentence B follows

sentence A).

Transformers are state-of-the-art in many NLP tasks and can capture contextual information that

word2vec and GloVe cannot capture, thanks to a mechanism called attention. Attention allows the

model to weigh other words’ importance and capture contextual information. For example, in the

sentence “I went to the bank to deposit money”, the word “bank” is ambiguous. Is it a river bank or a

savings bank? The model can use the word “deposit” to understand that it’s a savings bank. These are

contextualized embeddings - their word embedding can differ based on their surrounding words.

Ok…we talked a lot about word embeddings; time to run some code. Let’s use a pre-trained transformer

model, bert-base-uncased, and obtain some word embeddings. We’ll use the transformers  library for

this. Let’s begin by loading the model and its tokenizer

We haven’t talked about tokenization so far. Until now, we’ve assumed we split data into words. When

using transformers, we divided text into tokens. For example, the word “banking” could be split into two

tokens, “bank” and “ing”. The tokenizer is responsible for breaking the data into tokens, and the way it

splits the data is model-speci�c and is a deterministic learning process, which means that the same

word will always be split into the same tokens. Let’s see what this looks like in code:

['[CLS]', 'the', 'king', 'and', 'the', 'queen', 'are', 'happy', '.', '[SEP]']

Alright, in this example, each word was a token! (this is not always the case, as we’ll soon see). But we

also see two things that might be unexpected: [CLS]  and [SEP] . These are special tokens added to the

sentence’s beginning and end. These are used because BERT was trained with that format. One of

BERT’s training objectives is next-sentence prediction, which means that it was trained to predict

whether two sentences are consecutive. The [CLS]  token represents the entire sentence, and the

[SEP]  token separates sentences. This will be interesting later when we talk about sentence

embeddings.

Let’s now obtain the embeddings of each token.

torch.Size([1, 10, 768])

Great! BERT is giving us an embedding of 768 values for each token. Each of these tokens has semantic

information - they capture the meaning of the word in the context of the sentence. Let’s see if the

from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

model = AutoModel.from_pretrained("bert-base-uncased")

text = "The king and the queen are happy."

tokenizer.tokenize(text, add_special_tokens=True)

encoded_input = tokenizer(text, return_tensors="pt")

output = model(**encoded_input)

output["last_hidden_state"].shape

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
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information - they capture the meaning of the word in the context of the sentence. Let’s see if the

embedding corresponding to the word “king” in this context is similar to the one in “queen”.

Shape of embedding torch.Size([768])

Similarity between king and queen embedding 0.7920711040496826

Ok, it seems they are quite similar in this context! Let’s now look at the word “happy”.

tensor([[0.5239]], grad_fn=<MmBackward0>)

This makes sense; the queen embedding is more similar to the king than the happy embedding.

Let’s now look at how the same word can have different values depending on the context:

torch.Size([1, 7, 768])

['[CLS]', 'the', 'angry', 'and', 'unhappy', 'king', '[SEP]']

tensor([[0.5740]], grad_fn=<MmBackward0>)

Wow! Although both embeddings seem to correspond to the “king” embedding, they are pretty

different in the vector space. What is going on? Remember that these are contextual embeddings. The

context of the �rst sentence is quite positive, while the second sentence is quite negative. Hence, the

embeddings are different.

Previously, we discussed how the tokenizer might split a word into multiple tokens. A valid question is

how we would obtain the word embedding in such a case. Let’s look at an example with the long word

“tokenization.”

['token', '##ization']

The word “tokenization” was split into two tokens, but we care about the embedding of “tokenization”!

What can we do? We can do a pooling strategy in which we obtain the embedding of each token and

king_embedding = output["last_hidden_state"][0][2]  # 2 is the position of king

queen_embedding = output["last_hidden_state"][0][5]  # 5 is the position of queen

print(f"Shape of embedding {king_embedding.shape}")

print(

f"Similarity between king and queen embedding {util.pytorch_cos_sim(king_embedding, queen

)

happy_embedding = output.last_hidden_state[0][7]  # happy

util.pytorch_cos_sim(king_embedding, happy_embedding)

text = "The angry and unhappy king"

encoded_input = tokenizer(text, return_tensors="pt")

output = model(**encoded_input)

output["last_hidden_state"].shape

tokenizer.tokenize(text, add_special_tokens=True)

king_embedding_2 = output["last_hidden_state"][0][5]

util.pytorch_cos_sim(king_embedding, king_embedding_2)

tokenizer.tokenize("tokenization")
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then average them to obtain the word embedding. Let’s try it out!

As before, we get started by tokenizing the test and running the token IDs through the model.

Let’s look at the tokenization of the sentence:

['[CLS]', 'this', 'is', 'about', 'token', '##ization', '[SEP]']

So we want to pool the embeddings of the tokens 4 and 5 by averaging them. Let’s �rst obtain the

embeddings of the tokens.

torch.Size([2, 768])

And now let’s average them using torch.mean .

torch.Size([768])

Let’s wrap all of it in a function so we can easily use it later.

text = "this is about tokenization"

encoded_input = tokenizer(text, return_tensors="pt")

output = model(**encoded_input)

tokenizer.tokenize(text, add_special_tokens=True)

word_token_indices = [4, 5]

word_embeddings = output["last_hidden_state"][0, word_token_indices]

word_embeddings.shape

import torch

torch.mean(word_embeddings, dim=0).shape

def get_word_embedding(text, word):

# Encode the text and do a forward pass through the model to get the hidden states

    encoded_input = tokenizer(text, return_tensors="pt")

with torch.no_grad():  # We don't need gradients for embedding extraction

        output = model(**encoded_input)

# Find the indices for the word

    word_ids = tokenizer.encode(

        word, add_special_tokens=False

    )  # No special tokens anymore

    word_token_indices = [

        i

for i, token_id in enumerate(encoded_input["input_ids"][0])

if token_id in word_ids

    ]

# Pool the embeddings for the word

    word_embeddings = output["last_hidden_state"][0, word_token_indices]

return torch.mean(word_embeddings, dim=0)
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Example 1. Similarity between king and queen embeddings in the context of both being angry.

tensor([[0.8564]])

Example 2. Similarity between king and queen embeddings in the context of the king being happy and

the queen angry. Notice how they are less similar than in the previous example.

tensor([[0.8273]])

Example 3. Similarity between king embeddings in two very different contexts. Even if they are the

same word, the different context of the word makes the embeddings very different.

tensor([[0.5740]])

Example 4. Similarity between a word that has two different meanings. The word “bank” is ambiguous,

it can be a river bank or a savings bank. The embeddings are different depending on the context.

tensor([[0.7587]])

I hope this gave an idea about what word embeddings are. Now that we understand word embeddings

let’s look into sentence embeddings!

Just as word embeddings are vector representations of words, sentence embeddings are vector

representations of a sentence. We can also compute embeddings of paragraphs and documents! Let’s

look into it.

There are three approaches we can take: [CLS]  pooling, max pooling and mean pooling.

• Mean pooling means averaging all the word embeddings of the sentence.

• Max pooling means taking the maximum value of each dimension of the word embeddings.

 pooling means using the embedding corresponding to the  token as the sentence

util.pytorch_cos_sim(

    get_word_embedding("The king is angry", "king"),

    get_word_embedding("The queen is angry", "queen"),

)

util.pytorch_cos_sim(

    get_word_embedding("The king is happy", "king"),

    get_word_embedding("The queen is angry", "queen"),

)

# This is same as before

util.pytorch_cos_sim(

    get_word_embedding("The king and the queen are happy.", "king"),

    get_word_embedding("The angry and unhappy king", "king"),

)

util.pytorch_cos_sim(

    get_word_embedding("The river bank", "bank"),

    get_word_embedding("The savings bank", "bank"),

)

Sentence Embeddings
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• [CLS]  pooling means using the embedding corresponding to the [CLS]  token as the sentence

embedding. Let’s look deeper into this last one, which is the least intuitive.

As we saw before, BERT adds a special token [CLS]  at the beginning of the sentence. This token is used

to represent the entire sentence. For example, when someone wants to �ne-tune a BERT model to

perform text classi�cation, a common approach is to add a linear layer on top of the [CLS]  embedding.

The idea is that the [CLS]  token will capture the meaning of the entire sentence.

We can take the same approach and use the embedding of the [CLS] token as the sentence embedding.

Let’s see how this works in code. We’ll use the same sentence as before.

torch.Size([1, 768])

Great! We obtained the model output’s �rst embedding, corresponding to the [CLS] token. Let’s wrap

this code into a function.

[CLS] Pooling

The hidden state/embedding corresponding to the CLS  token can be used to �ne-tune a classi�cation model.

encoded_input = tokenizer("This is an example sentence", return_tensors="pt"

model_output = model(**encoded_input)

sentence_embedding = model_output["last_hidden_state"][:, 0, :]

sentence_embedding.shape

def cls_pooling(model_output):

return model_output["last_hidden_state"][:, 0, :]

def get_sentence_embedding(text):
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tensor([[0.9261]]) The weather today is beautiful

tensor([[0.8903]]) It's raining!

tensor([[0.9317]]) Dogs are awesome

Hmm…something looks off here ���� One would have expected this to work out of the box.

Well, it turns out BERT has an additional trick. As mentioned before, when BERT was trained, the CLS

token was used to predict whether two sentences were consecutive. To do so, BERT processes the

[CLS]-corresponding embedding and passes it through a linear layer and a tanh activation function (see

code here). The idea is that the linear layer and the tanh activation function will learn a better

representation of the [CLS]  token. This is the pooler  component of the BERT model and is used to

obtain the model_output.pooler_output .

This might sound confusing, so let’s repeat what’s happening here.

1. BERT outputs the embeddings of each token.

2. The �rst embedding corresponds to the [CLS]  token.

3. The [CLS]  token is processed through a linear layer and a tanh activation function to obtain the

pooler_output .

During training, the pooler_output is used to predict whether two sentences are consecutive (one of the pre-

training tasks of BERT). This makes processing the [CLS] token more meaningful than the raw [CLS]

embedding.

To show that there is no magic going on here, we can either pass the list of word embeddings to

model.pooler  or simply get the pooler_output  from the model output. Let’s try it out!

tensor([-0.9302, -0.4884, -0.4387,  0.8024,  0.3668, -0.3349,  0.9438,  0.3593,

        -0.3216, -1.0000], grad_fn=<SliceBackward0>)

tensor([-0.9302, -0.4884, -0.4387,  0.8024,  0.3668, -0.3349,  0.9438,  0.3593,

        -0.3216, -1.0000], grad_fn=<SliceBackward0>)

Yay! As you can see, the �rst ten elements of the embedding are identical! Let’s now re-compute the

distances using this new embedding technique:

def get_sentence_embedding(text):

    encoded_input = tokenizer(text, return_tensors="pt")

with torch.no_grad():

        model_output = model(**encoded_input)

return cls_pooling(model_output)

embeddings = [get_sentence_embedding(sentence) for sentence in sentences]

query_embedding = get_sentence_embedding("Today is a sunny day")

for embedding, sentence in zip(embeddings, sentences):

    similarity = util.pytorch_cos_sim(query_embedding, embedding)

print(similarity, sentence)

model.pooler(model_output["last_hidden_state"])[0][:10]

model_output["pooler_output"][0][:10]

https://github.com/huggingface/transformers/blob/95754b47a6d4fbdad3440a45762531e8c471c528/src/transformers/models/bert/modeling_bert.py#L652C7-L665
https://github.com/huggingface/transformers/blob/95754b47a6d4fbdad3440a45762531e8c471c528/src/transformers/models/bert/modeling_bert.py#L652C7-L665
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tensor([[0.9673]], grad_fn=<MmBackward0>) The weather today is beautiful

tensor([[0.9029]], grad_fn=<MmBackward0>) It's raining!

tensor([[0.8930]], grad_fn=<MmBackward0>) Dogs are awesome

Much, much better! We just obtained the closest sentences to “Today is a sunny day”.

Sentence Transformers

This yields some decent results, but in practice, this was not much better than using Word2Vec or

GloVe word embeddings and averaging them. The reason is that the [CLS] token is not trained to be a

good sentence embedding. It’s trained to be a good sentence embedding for next-sentence prediction!

Introducing ������������������������������������ Sentence Transformers! Sentence Sentence Transformers (also known as SBERT)

have a special training technique focusing on yielding high-quality sentence embeddings. Just as in the

TL;DR section of this blog post, let’s use the all-MiniLM-L6-v2 model. In the beginning, we used the

sentence-transformers  library, which is a high-level wrapper library around transformers . Let’s try

to go the hard way �rst! The process is as follows:

1. We tokenize the input sentence.

2. We process the tokens through the model.

3. We calculate the mean of the token embeddings.

4. We normalize the embeddings to ensure the embedding vector has a unit length.

Just as before, we can load the model and the tokenizer, tokenize the sentence and pass it to the model

What we’ve done until now is very similar to what we did before, except that we are using a different

model. The next step is to do pooling. While previously we did [CLS] pooling, sentence transformers

usually use mean or max pooling. Let’s try it out!

torch.Size([1, 7, 384])

def cls_pooling(model_output):

return model.pooler(model_output["last_hidden_state"])  # we changed this

# This stays the same

embeddings = [get_sentence_embedding(sentence) for sentence in sentences]

query_embedding = get_sentence_embedding("Today is a sunny day")

for embedding, sentence in zip(embeddings, sentences):

    similarity = util.pytorch_cos_sim(query_embedding, embedding)

print(similarity, sentence)

Using the transformers library

tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"

model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")

encoded_input = tokenizer("Today is a sunny day", return_tensors="pt")

model_output = model(**encoded_input)

token_embeddings = model_output["last_hidden_state"]

token_embeddings.shape

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Note how, with this model, each embedding is smaller (384 values rather than 768). We can now

compute the mean of the embeddings to obtain the sentence embedding.

torch.Size([1, 384])

The last step is to perform normalization. Normalization ensures that the embedding vector has a unit

length, which means its length (or magnitude) is 1.

To understand why we do normalization, revisiting some vector math is helpful. For a vector v with components

(v1, v2, …, vn), it’s length is de�ned as

When normalizing a vector, we scale the values so that the vector length is 1. This is done by dividing each

vector element by the vector’s magnitude.

This is particularly helpful when we want to compare vectors. For example, if we want to compute the

cosine similarity between two vectors, we usually compare their direction rather than their magnitude.

Normalizing the vectors ensures that each vector contributes equally to the similarity. We’ll talk more

about embedding comparisons soon! Let’s try it out!

Actually, we are using cosine similarity to compute the similarity between embeddings. As we’ll see later in the

blog post, the magnitude of the embeddings is not relevant when computing the cosine similarity, but it’s still a

good think to normalize them in case we want to experiment with other ways to measure distances.

torch.Size([1, 384])

Let’s wrap this in a function!

mean_embedding = torch.mean(token_embeddings, dim=1)

mean_embedding.shape

What is normalization?

∥v∥ = √v2
1 + v2

2 + … + v2
n

u =
v

∥v∥

Note

import torch.nn.functional as F

normalized_embedding = F.normalize(mean_embedding)

normalized_embedding.shape

def mean_pooling(model_output):

return torch.mean(model_output["last_hidden_state"], dim=1)

def get_sentence_embedding(text):

    encoded_input = tokenizer(text, return_tensors="pt")

with torch.no_grad():

        model_output = model(**encoded_input)
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tensor([-0.0926,  0.5913,  0.5535,  0.4214,  0.2129])

In practice, you’ll likely be encoding batches of sentences, so we need to make some changes

• Modify the tokenization so we apply truncation  (cutting the sentence if it’s longer than the

maximum length) and padding  (adding [PAD]  tokens to the end of the sentence).

• Modify the pooling so we take the attention mask into account. The attention mask is a vector of

0s and 1s that indicates which tokens are real and which are padding. We want to ignore the

padding tokens when computing the mean!

tensor([-0.0163,  0.1041,  0.0974,  0.0742,  0.0375])

We got the same result, great! Let’s now repeat our search example from before.

tensor([[0.7344]]) The weather today is beautiful

tensor([[0.4180]]) It's raining!

tensor([[0.1060]]) Dogs are awesome

Nice! Compared to the vanilla BERT [CLS]-pooled embeddings, the sentence transformer embeddings

        model_output = model( encoded_input)

    sentence_embeddings = mean_pooling(model_output)

return F.normalize(sentence_embeddings)

get_sentence_embedding("Today is a sunny day")[0][:5]

def mean_pooling(model_output, attention_mask):

    token_embeddings = model_output["last_hidden_state"]

    input_mask_expanded = (

        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()

    )

return torch.sum(token_embeddings, 1) / torch.clamp(

        input_mask_expanded.sum(1), min=1e-9

    )

# This now receives a list of sentences

def get_sentence_embedding(sentences):

    encoded_input = tokenizer(

        sentences, padding=True, truncation=True, return_tensors="pt"

    )

with torch.no_grad():

        model_output = model(**encoded_input)

    sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"

return F.normalize(sentence_embeddings)

query_embedding = get_sentence_embedding("Today is a sunny day")[0]

query_embedding[:5]

embeddings = [get_sentence_embedding(sentence) for sentence in sentences]

for embedding, sentence in zip(embeddings, sentences):

    similarity = util.pytorch_cos_sim(query_embedding, embedding)

print(similarity, sentence)
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are more meaningful and have a larger difference between the unrelated vectors!

When to use each pooling strategy? It depends on the task.

• [CLS]  pooling is usually used when the transformer model has been �ne-tuned on a speci�c

downstream task that makes the [CLS]  token very useful.

• Mean pooling is usually more effective on models that have not been �ne-tuned on a downstream task. It

ensures that all parts of the sentence are represented equally in the embedding and can work for long

sentences where the in�uence of all tokens should be captured.

• Max pooling can be useful to capture the most important features in a sentence. This can be very useful if

particular keywords are very informative, but it might miss the subtler context.

In practice, a pooling method will be stored with the model, and you won’t have to worry about it. If there’s no

method speci�ed, mean pooling is usually a good default.

This was relatively easy, but the sentence-transformers  library makes it even easier for us to do all of

this! Here is the same code as in the TL;DR section.

tensor([[0.7344]]) The weather today is beautiful

tensor([[0.4180]]) It's raining!

tensor([[0.1060]]) Dogs are awesome

This is quite powerful! If you had to implement a feature to identify duplicate questions without using

ML, you would likely have to implement a lexical search system (which looks at exact matches of the

input question), a fuzzy search system (which looks at approximate matches of the input question), or a

statistical search system (which looks at the frequency of words in the input question).

With embeddings, we can easily �nd similar questions without implementing any of these systems and

having excellent results!

The following image is a good example of how embeddings can be used to �nd code that would answer

a user’s question.

Using the sentence-transformers library

from sentence_transformers import SentenceTransformer

# We load the model

model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

query_embedding = model.encode("Today is a sunny day")

embeddings = model.encode(sentences)

for embedding, sentence in zip(embeddings, sentences):

    similarity = util.pytorch_cos_sim(query_embedding, embedding)

print(similarity, sentence)
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As you saw before, the model we used, all-MiniLM-L6-v2, generates sentence embeddings of 384

values. This is a hyperparameter of the model and can be changed. The larger the embedding size, the

more information the embedding can capture. However, larger embeddings are more expensive to

compute and store.

The embeddings of popular open-source models go from 384 to 1024. The best current model, as of the

time of writing, has embedding dimensions of 4096 values, but the model is much larger (7 billion

parameters) compared to other models. In the closed-sourced world, Cohere has APIs that go from 384

to 4096 dimensions, OpenAI has embeddings of 1536, and so on. Embedding dimension is a trade-off.

If you use very large embeddings, you will potentially get better results, but you will also have to pay

more for hosting and inference. If you use vector databases, you will also have to pay more for storage.

One of the limitations of transformer models is that they have a maximum sequence length. This means

that they can only process a certain number of tokens. For example, BERT has a maximum context

length of 512 tokens. This means that if you want to encode a sentence with more than 512 tokens, you

will have to �nd ways to work around this limitation. For example, you could split the sentence into

multiple sentences of 512 tokens and then average the embeddings. This is not ideal because the model

will not be able to capture the context of the entire sentence.

This is not a problem for most use cases, but it can be a problem for long documents. For example, if you

want to encode a 1000-word document, you will have to split it into multiple sentences of 512 tokens.

This is not ideal because the model will not be able to capture the context of the entire document.

Another approach can be to �rst generate a summary of the text and then encode the summary. This is

a good approach if you want to encode long documents, but will require a good summarization model

that might be too slow. Alternatively, you might know if a speci�c part of the document is good (such as

abstracts, introductions, conclusions, etc.) and only encode that part if that’s the most meaningful part

for your task.

Application 1. Finding most similar Quora duplicate

We’re going to use the open-source Quora dataset, which contains 400,000 pairs of questions from

Quora. We will not train a model (yet!) and rather just use the embeddings to �nd similar questions

Image of code search

Embedding dimensions

Sequence length

https://huggingface.co/datasets/quora
https://huggingface.co/datasets/quora
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given a new question. Let’s get started!

Our �rst step will be to load the data - to do this, we’ll use the datasets  library.

Dataset({

    features: ['questions', 'is_duplicate'],

    num_rows: 404290

})

To take a quick look at the data within the Dataset  object, we can convert it to a Pandas DataFrame

and look at the �rst rows.

questions is_duplicate

0 {'id': [1, 2], 'text': ['What is the step by s... False

1 {'id': [3, 4], 'text': ['What is the story of ... False

2 {'id': [5, 6], 'text': ['How can I increase th... False

3 {'id': [7, 8], 'text': ['Why am I mentally ver... False

4 {'id': [9, 10], 'text': ['Which one dissolve i... False

Ok, so each sample is a dictionary. We do not care about the is_duplicate  column here. Our goal is to

�nd if any question in this dataset is similar to a new question. Let’s process the dataset so we only have

a list of questions.

537362

The next step is to embed all the questions. We’ll use the sentence-transformers  library for this.

We’ll use the quora-distilbert-multilingual  model, which is a model trained for 100 languages

and is trained speci�cally for Quora-style questions. This is a larger model, and hence will be slightly

slower. It will also generate larger embeddings of 768 values.

To get some quick results without having to wait �ve minutes for the model to process all the questions,

we’ll only process the �rst 100000 questions. In practice, you would process all the questions or shuf�e

the questions and process a random subset of them when experimenting.

!pip install datasets

from datasets import load_dataset

dataset = load_dataset("quora")["train"]

dataset

dataset.to_pandas().head()

corpus_questions = []

for d in dataset:

    corpus_questions.append(d["questions"]["text"][0])

    corpus_questions.append(d["questions"]["text"][1])

corpus_questions = list(set(corpus_questions))  # Remove duplicates

len(corpus_questions)

https://huggingface.co/sentence-transformers/quora-distilbert-multilingual
https://huggingface.co/sentence-transformers/quora-distilbert-multilingual
https://huggingface.co/sentence-transformers/quora-distilbert-multilingual
https://huggingface.co/sentence-transformers/quora-distilbert-multilingual


torch.Size([100000, 768])

We just obtained 100,000 embddings in 20 seconds, even when this Sentence Transformer model is not

tiny and I’m running this on my GPU-Poor computer. Unlike generative models, which are

autoregressive and usually much slower, BERT-based models are super fast!

Let’s now write a function that searches the corpus for the most similar question.

Results (after 0.612 seconds):

0.982   What is the best online resource to learn Python?

0.980   Where I should learn Python?

0.980   What's the best way to learn Python?

0.980   How do I learn Python in easy way?

0.979   How do I learn Python systematically?

Let’s try in Spanish!

Results (after 0.016 seconds):

0.980   What are the best websites to learn Python?

0.980   How can I start learning the developing of websites using Python?

0.979   How do I learn Python in easy way?

0.976   How can I learn Python faster and effectively?

0.976   How can I learn advanced Python?

model = SentenceTransformer("quora-distilbert-multilingual")

questions_to_embed = 100000

corpus_embeddings = model.encode(

    corpus_questions[:questions_to_embed],

    show_progress_bar=True,

    convert_to_tensor=True,

)

corpus_embeddings.shape

import time

def search(query):

    start_time = time.time()

    query_embedding = model.encode(query, convert_to_tensor=True)

    results = util.semantic_search(query_embedding, corpus_embeddings)

    end_time = time.time()

print("Results (after {:.3f} seconds):".format(end_time - start_time))

# We look at top 5 results

for result in results[0][:5]:

print(

"{:.3f}\t{}".format(result["score"], corpus_questions[result["corpus_id"

        )

search("How can I learn Python online?")

search("Como puedo aprender Python online?")



0.976   How can I learn advanced Python?

It seems to be working quite well! Note that although our model can process queries in other

languages, such as Spanish in the example above, the embeddings were generated for English

questions. This means that the model will not be able to �nd similar questions in other languages.

Distance between embeddings

Until now we’ve been computing the cosine similarity between embeddings. This is a number between

0 and 1 that indicates how similar two embeddings are. A value of 1 means that the embeddings are

identical, while 0 means that the embeddings are entirely different. So far we’ve used it as a black-box,

so let’s look into it a bit more.

The cosine similarity allows us to compare how similar two vectors are regardless of their magnitude.

For example, if we have two vectors, [1, 2, 3] and [2, 4, 6], they are very similar in terms of direction, but

their magnitude is different. The cosine similarity will be close to 1, indicating that they are very similar.

tensor([[0.9926]])

Let’s plot both vectors. As you can see, they are very similar in terms of direction, but their magnitude is

different.

tensor([1., 2., 3.])

Cosine similarity

a = torch.FloatTensor([1, 2, 3])

b = torch.FloatTensor([2, 3, 4])

util.cos_sim(a, b)

a

import matplotlib.pyplot as plt

import numpy as np

V = np.array([a.tolist(), b.tolist()])

origin = np.array([[0, 0], [0, 0]])  # origin point

plt.quiver(*origin, V[:, 0], V[:, 1], color=["r", "b", "g"], scale=10)

plt.show()



Let’s dive into its math. Cosine similarity is de�ned as the dot product of the vectors divided by the

product of their magnitudes:

We already discussed magnitudes at the beginning of the blog post. We need to compute the square

root of the sum of the squares of a vector component

We also need to compute the dot product of the vectors. The dot product is de�ned as the sum of the

products of the corresponding vector components

In this case, the dot product for A and B would look as follows

Finally, we can compute the cosine similarity by doing

which matches our result above.

Can you think of two vectors with cosine similarity of 1? Think of vectors with same direction but different

magnitude.

Cosine similarity does not take magnitude into account, but there might be use cases where the

magnitude is meaningful. In those cases, dot product is a better metric. This means that longer or more

verbose sentences with similar content could have a higher similarity score than shorter sentences

with similar content due to their magnitude.

cosine similarity(A, B) =
A ⋅ B

∥A∥∥B∥

∥A∥ = √12 + 22 + 32 = √14

∥B∥ = √22 + 32 + 42 = √29

A ⋅ B =
n

∑
i=1

AiBi

A ⋅ B = 1 × 2 + 2 × 3 + 3 × 4 = 2 + 6 + 12 = 20

cosine similarity(A, B) =
20

√14√29
= 0.992583

Note

Dot product



with similar content due to their magnitude.

The dot product is de�ned as the sum of the products of the corresponding vector components (it’s

what we did before!)

If you look at the cosine similarity formula, if you assume the vectors are normalized (that is, their

magnitude is 1), the cosine similarity is equivalent to the dot product. This means that the cosine

similarity is a normalized dot product.

Let’s create a new vector, [4, 6, 8]. This vector has the same direction as [2, 3, 4], but it’s twice as long.

Let’s compute the dot product of [1, 2, 3] with [2, 3, 4] and [4, 6, 8].

Cosine Similarity between a and b: tensor([[0.9926]])

Cosine Similarity between a and c: tensor([[0.9926]])

Dot product between a and b: 20.0

Dot product between a and c: 40.0

This makes sense! As b and c have the same angle, the cosine similarity is the same between a and b and

a and c. However, the dot product is higher for a and c because c is longer than b.

A ⋅ B =
n

∑
i=1

AiBi

c = torch.FloatTensor([4, 6, 8])

print(f"Cosine Similarity between a and b: {util.cos_sim(a, b)}")

print(f"Cosine Similarity between a and c: {util.cos_sim(a, c)}")

print(f"Dot product between a and b: {torch.dot(a, b)}")

print(f"Dot product between a and c: {torch.dot(a, c)}")

V = np.array([a.tolist(), b.tolist(), c.tolist()])

origin = np.array([[0, 0, 0], [0, 0, 0]])  # origin point

plt.quiver(*origin, V[:, 0], V[:, 1], color=["r", "b", "g"], scale=20)

plt.show()



The Euclidean Distance is the distance between two vectors by measuring a straight line between

them. Just as the dot product, the Euclidean distance takes magnitude into account. I won’t dive too

much into interpreting both metrics, but the main idea is that the Dot Product measures how much one

vector extends into the direction of another vector, while the Euclidean Distance measures the

straight-line distance between two vectors. It is de�ned as the square root of the sum of the squared

differences between the vector components. It’s de�ned as

In practice, you can use the Squared Euclidean (L2-Squared)

We just learned about dot-product, cosine similarity, and euclidean distance. When to use which?

It depends on the model! Some models will be trained in a way that they produce normalized

embeddings. In this case, dot-product, cosine similarity and euclidean distance will all produce the same

results.

Other models are not trained in a way that they produce normalized embeddings - they are tuned for

dot-product. In this case, dot-product will be the best function to �nd the closest items in a vector

space. Even then, if the magnitude is not important, we can normalize as we did in the previous

sections. You can use different distance functions depending on your use case. Models with

normalized embeddings will prefer shorter sentences, while models with non-normalized embeddings

will prefer longer sentences. This is because the magnitude of the embeddings will be larger for longer

sentences.

Distance function Values When to use

Cosine similarity [-1, 1] When the magnitude is not important

Dot product [-inf, inf] When the magnitude is important

Euclidean distance [0, inf] When the magnitude is important

To recap:

Euclidean Distance

Euclidean Distance(A, B) =
n

∑
i=1

(Ai − Bi)2


⎷

Squared Euclidean(A, B) =
n

∑
i=1

(Ai − Bi)
2

Picking a score function



• Cosine similarity focuses on the angle between vectors. It’s a normalized dot product.

• Dot product focused on both magnitude and angle.

• Euclidean distance measures spatial distance between vectors.

There are other distance functions, such as Manhattan distance, but these are common ones and useful

for our use cases!

Scaling Up

Until now we’ve been working with just a couple of sentences. In practice, you might have to deal with

millions of embeddings, and we cannot always compute the distance to all of them (this is called brute-

force search).

One approach is to use an approximate nearest neighbor algorithm. These algorithms partition the data

into buckets of similar embeddings. This allows us to quickly �nd the closest embeddings without

having to compute the distance to all of them. This is not exact, as some vectors with high similarity

might still be missed. There are different libraries you can use to do this, such as Spotify’s Annoy and

Facebook’s Faiss. Vector databases such as Pinecone and Weaviate also use nearest neighbor

techniques to be able to search millions of objects in milliseconds.

For now, let’s look at an interesting application where the scaling issues become more apparent.

Until now, with semantic search, we’ve been looking for the sentence most similar to a query sentence.

In paraphrase mining, the goal is to �nd texts with similar meaning in a very large corpus. Let’s take our

Quora dataset and see if we can �nd similar questions.

['',

 'What are the Nostradamus Predictions for the 2017?',

 'Is it expensive to take music lessons?',

 'what are the differences between first world and third world countries? Are 

there any second world countries?',

 'How much is a 1963 2 dollar bill with a red seal worth?',

 'What is the capital of Finland?',

 'Which is the best project management app for accounting companies?',

 "What is Dire Straits' best album ever?",

 'How does Weapon Silencers work?',

 'How should we study in medical school?']

Application 2. Paraphrase Mining

questions_to_embed = 10

short_corpus_questions = corpus_questions[:questions_to_embed]

short_corpus_questions

model = SentenceTransformer("quora-distilbert-multilingual")

embeddings = model.encode(short_corpus_questions, convert_to_tensor=True)

# Compute distance btween all embeddings

start_time = time.time()

distances = util.pytorch_cos_sim(embeddings, embeddings)

end_time = time.time()

https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss


Results (after 0.000 seconds):

tensor([[1.0000, 0.7863, 0.6348, 0.7524, 0.7128, 0.7620, 0.6928, 0.7316, 0.6973,

         0.6602],

        [0.7863, 1.0000, 0.7001, 0.8369, 0.8229, 0.8093, 0.7694, 0.8111, 0.7849,

         0.7157],

        [0.6348, 0.7001, 1.0000, 0.6682, 0.7346, 0.7228, 0.7257, 0.7434, 0.7529,

         0.7616],

        [0.7524, 0.8369, 0.6682, 1.0000, 0.7484, 0.8042, 0.6713, 0.7560, 0.7336,

         0.6901],

        [0.7128, 0.8229, 0.7346, 0.7484, 1.0000, 0.7222, 0.7419, 0.7603, 0.8080,

         0.7145],

        [0.7620, 0.8093, 0.7228, 0.8042, 0.7222, 1.0000, 0.7327, 0.7542, 0.7349,

         0.6992],

        [0.6928, 0.7694, 0.7257, 0.6713, 0.7419, 0.7327, 1.0000, 0.7820, 0.7270,

         0.7513],

        [0.7316, 0.8111, 0.7434, 0.7560, 0.7603, 0.7542, 0.7820, 1.0000, 0.7432,

         0.7151],

        [0.6973, 0.7849, 0.7529, 0.7336, 0.8080, 0.7349, 0.7270, 0.7432, 1.0000,

         0.7243],

        [0.6602, 0.7157, 0.7616, 0.6901, 0.7145, 0.6992, 0.7513, 0.7151, 0.7243,

         1.0000]], device='cuda:0')

Awesome! We just computed the distances of 10 embeddings vs 10 embeddings. It was quite fast. Let’s

try now with 1000 queries.

Results (after 0.000 seconds):

Ok, that’s still fast! Let’s look at some other values

 time.time()

print("Results (after {:.3f} seconds):".format(end_time - start_time))

distances

def compute_embeddings_slow(questions, n=10):

    embeddings = model.encode(

        questions[:n], show_progress_bar=True, convert_to_tensor=True

    )

# Compute distance btween all embeddings

    start_time = time.time()

    distances = util.pytorch_cos_sim(embeddings, embeddings)

    end_time = time.time()

return distances, end_time - start_time

_, s = compute_embeddings_slow(corpus_questions, 20000)

print("Results (after {:.3f} seconds):".format(s))

import matplotlib.pyplot as plt

n_queries = [1, 10001, 20001, 30001]  # If I keep going my computer explodes

times = []



Text(0, 0.5, 'Time (seconds)')

The algorithm above has a quadratic runtime, so it won’t scale up well if we keep increasing the number

of queries. For larger collections, we can use the paraphrase mining technique, which is more complex

and ef�cient.

250976

[[0.999999463558197, 18862, 24292],

 [0.9999779462814331, 10915, 61354],

 [0.9999630451202393, 60527, 86890]]

for n in n_queries:

    _, s = compute_embeddings_slow(corpus_questions, n)

    times.append(s)

    torch.cuda.empty_cache()  # Clear GPU cache

plt.plot(n_queries, times)

plt.xlabel("Number of queries")

plt.ylabel("Time (seconds)")

start_time = time.time()

paraphrases = util.paraphrase_mining(

    model, corpus_questions[:100000], show_progress_bar=True

)

end_time = time.time()

len(paraphrases)

paraphrases[:3]

https://www.sbert.net/examples/applications/paraphrase-mining/README.html
https://www.sbert.net/examples/applications/paraphrase-mining/README.html


 [0.9999630451202393, 60527, 86890]]

The �rst value is the score, the second is the index of a corpus question, and the third is another index

to a corpus question. The score indicates how similar the two questions are.

Nice! We just 1. Computed the embeddings of 100,000 questions 2. Obtained the most similar

sentences, and 3. Sorted them

All of this in 20 seconds! Let’s look at the 5 matches with the highest similariy

1.000   How do I  increase traffic on my site? and How do I increase traffic on my 

site?

1.000   who is the best rapper of all time? and Who is the best rapper of all 

time?

1.000   How can I become an automobile engineer? and How can I become a automobile 

engineer?

1.000   I made a plasma vortex at my home, but why doesn't it produce a zapping 

sound like at time when we see sparks and does the air nearby it ionizes? and I 

made a plasma vortex at my home, but why doesn't it produce a zapping sound like 

at time when we see sparks and does the air nearby it, ionizes?

1.000   Why was Cyrus Mistry removed as the chairman of Tata Sons? and Why was 

Cyrus Mistry removed as the Chairman of Tata Sons?

How does this method work? The corpus is divided into smaller chunks, which allows us to manage the

memory and compute usage. There are two ways in which the chunking happens:

• Query Chunk Size: Determines how many sentences are considered as potential paraphrases. This

is the number of sentences that are compared to the query sentence and controlled with

query_chunk_size  (5000 by default).

• Corpus Chunk Size: Determines how many chunks of the corpus are being compared

simultaneously. This is controlled with corpus_chunk_size  (100000 by default).

For example, with the default parameters, the algorithm processes 5000 sentences at a time,

comparing each of these against chunks of 100000 sentences from the rest of the corpus. The

algorithm is focused on getting the top matches - using top_k , for each sentence in a query chunk, the

algorithm just selects the top k matches from the corpus chunk. This means that the algorithm will not

�nd all the matches, but it will �nd the top matches. This is a good trade-off as we usually don’t need all

the matches, but just the top ones.

Both parameters make the process more ef�cient as it’s computationally easier to handle smaller

subsets of the data. It also helps use less memory as we don’t have to load the entire corpus into

memory to compute the similarity. Finding the right values for these parameters is a trade-off between

speed and accuracy. The larger the values, the more accurate the results, but the slower the algorithm.

You can use max_pairs  to limit the number of pairs returned.

Here is some pseudocode of the algorithm:

for score, i, j in paraphrases[:5]:

print("{:.3f}\t{} and {}".format(score, corpus_questions[i], corpus_questions[j]))

Note



Selecting and evaluating models

You should have a pretty good understanding of sentence embeddings and what we can do with them.

Today, we used two different models, all-MiniLM-L6-v2  and quora-distilbert-multilingual .

How do we know which one to use? How do we know if a model is good or not?

The �rst step is to know where to discover sentence embedding models. If you’re using open-source

ones, the Hugging Face Hub allows you to �lter for them. The community has shared over 4000

models! Although looking at the trending models on Hugging Face is a good indicator (e.g., I can see the

Microsoft Multilingual 5 Large model, a decent one), we need more information to pick a model.

MTEB has us covered. This leaderboard contains multiple evaluation datasets for various tasks. Let’s

quickly look at some criteria we’re interested in when picking a model.

• Sequence length. As discussed before, you might need to encode longer sequences depending on

the expected user inputs. For example, if you’re encoding long documents, you might need to use a

model with a larger sequence length. Another alternative is to split the document into multiple

sentences and encode each sentence separately.

• Language. The leaderboard contains mostly English or multilingual models, but you can also �nd

models for other languages such as Chinese, Polish, Danish, Swedish, German, etc.

• Embedding dimension. As discussed before, the larger the embedding dimension, the more

information the embedding can capture. However, larger embeddings are more expensive to

compute and store.

• Average metrics across tasks. The leaderboard contains multiple tasks, such as clustering, re-

ranking, and retrieval. You can look at the average performance across all tasks to get a sense of

how good the model is.

• Task-speci�c metrics. You can also look at the model’s performance in speci�c tasks. For example,

if you’re interested in clustering, you can look at the model’s performance in the clustering task.

Knowing the purpose of the model is also essential. Some models will be generalist models. Others,

such as Specter 2, are focused on speci�c tasks, such as scienti�c papers. I won’t dive too much into all

the tasks in the leaderboard, but you can look at the MTEB paper for more information. Let me give a

brief summary of MTEB.

# Initialize an empty list to store the results

results = []

for query_chunk in query_chunks:

for corpus_chunk in corpus_chunks:

# Compute the similarity between the query chunk and the corpus chunk

        similarity = compute_similarity(query_chunk, corpus_chunk)

# Get the top k matches in the other chunk

        top_k_matches = similarity.top_k(top_k)

# Add the top k matches to the results

        results.add(top_k_matches)

https://huggingface.co/models?library=sentence-transformers
https://huggingface.co/models?library=sentence-transformers
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/allenai/specter2
https://huggingface.co/allenai/specter2
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316


MTEB provides a benchmark of 56 datasets across eight tasks and contains 112 languages. It’s easily

extensible to add your datasets and models to the leaderboard. Overall, it’s a straightforward tool to

�nd the suitable speed-accuracy trade-off for your use case.

Today’s (Jan 7th, 2024) top model is a large model, E5-Mistral-7B-instruct, which is 14.22Gb in size and

an average of 66.63 over the 56 datasets. One of the next best open-source models is BGE-Large-en-

v1.5, which is just 1.34Gb and performs an average of 64.23. And the base model for BGE, which is even

smaller (0.44Gb), has a quality of 63.55! As a comparison, text-embedding-ada-002, even if it provides

larger embeddings of 1536 dimensions, performs with a quality of 60.99. That’s number 23 in the

MTEB benchmark! Cohere provides better embeddings, with a quality of 64.47 and embeddings of

1024 dimensions.

I recommend looking at this Twitter thread from 2022, in which OpenAI embeddings were compared

against other embeddings. The results are quite interesting! The costs were many orders of magnitude

higher, and the quality was considerably lower than smaller models.

All of this said, don’t over�xate on a single number. You should always look at the speci�c metrics of

your task and the particular resource and speed requirements

It’s interesting to look at the different tasks covered in MTEB to understand potential sentence

embedding applications better.

• Bitext Mining. This task involves �nding the most similar sentences in two sets of sentences, each

in a different language. It is essential for machine translation and cross-lingual search.

• Classi�cation. In this application, a logistic regression classi�er is trained using sentence

embeddings for text classi�cation tasks.

• Clustering. Here, a k-means model is trained on sentence embeddings to group similar sentences

together, useful in unsupervised learning tasks.

• Pair Classi�cation. This task entails predicting whether a pair of sentences are similar, such as

determining if they are duplicates or paraphrases, aiding in paraphrase detection.

• Re-ranking. In this scenario, a list of reference texts is re-ranked based on their similarity to a

query sentence, improving search and recommendation systems.

• Retrieval. This application involves embedding queries and associated documents to �nd the most

MTEB tasks image from the paper

https://twitter.com/Nils_Reimers/status/1487014195568775173
https://twitter.com/Nils_Reimers/status/1487014195568775173
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316


similar documents to a given query, crucial in search-related tasks.

• Semantic Similarity. This task focuses on determining the similarity between a pair of sentences,

outputting a continuous similarity score, useful in paraphrase detection and related tasks.

• Summarization. This involves scoring a set of summaries by computing the similarity between

them and a reference (human-written) summary, important in summarization evaluation.

Showcase Application: Real-time Embeddings in your browser

We won’t do the hands-on for this one, but I wanted to show you a cool application of embeddings. Lee

Butterman built a cool app where users can search among millions of Wikipedia articles by using

embeddings. What is extra nice here is that this is of�ine: the embeddings are stored in the browser

and the model is running directly in your browser as well - nothing is being sent to a server! �������

Preparing the data

• We �rst pre-compute an embedding database. The author used a small yet effective model, all-

minilm-l6-v2.

• The database of 6 million pages * 384 dimensions * 4 bytes per �oat = 9.2 GB. This is quite large to

have users download that.

• The author used a technique called product quantization to reduce the size of the database.

• The data is then exported to a format called Arrow, which is very compact!

Do not worry too much about the speci�cs here. Our main goal is to understand the high-level idea of this

project; so don’t be scared if this is the �rst time you hear the word “quantization”!

At inference time

• Lee used transformers.js, a library that allows to run transformers models in the browser with

JavaScript. This requires having quantized models. Here is an example

• transformers.js  downloads the all-MiniLM-L6-v2 model to the browser and is used to compute

the embeddings in the browser.

• The distance is then computed using pq.js.

Read more about this project in Lee’s blog post.This is a great example of how embeddings can be used

in the browser!

The State of the Ecosystem

Note

const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2'

const output = await extractor('This is a simple test.', { pooling: 'mean',

// Tensor {

//   type: 'float32',

//   data: Float32Array [0.09094982594251633, -0.014774246141314507, ...],

//   dims: [1, 384]

// }

https://leebutterman.com/wikipedia-search-by-vibes/
https://leebutterman.com/wikipedia-search-by-vibes/
https://en.wikipedia.org/wiki/Vector_quantization
https://en.wikipedia.org/wiki/Vector_quantization
https://github.com/xenova/transformers.js
https://github.com/xenova/transformers.js
https://github.com/lsb/pq.js
https://github.com/lsb/pq.js
https://www.leebutterman.com/2023/06/01/offline-realtime-embedding-search.html
https://www.leebutterman.com/2023/06/01/offline-realtime-embedding-search.html


The ecosystem around embeddings is quite large.

• There are cool tools such as top2vec  and bertopic  designed for buildimg topic embeddings.

• keybert  is a library that allows extracting keywords and keyphrases similar to a document using

BERT embeddings.

• setfit  is a library that allows doing ef�cient few-shot �ne-tuning of Sentence Transformers to

use them for text classi�cation.

2023 has been the year of embedding databases. LangChain Integrations Section show 65 vector

stores. From Weaviate, Pinecone, and Chroma to Redis, ElasticSearch, and Postgres. Embedding

databases are specialized to accelerate similarity search on embeddings, usually using approximate

search algorithms. The new wave of embedding database startups has lead to a big amount of money

being invested in it. At the same time, classical existing database companies have integrated vector

indexes into their products, such as Cassandra and MongoDB.

The research around embeddings is also quite active. If you follow the MTEB benchmark, it changes

every few weeks. Some of the players in this are are Microsoft (E5 models), Cohere, BAAI (BGE),

Alibaba (GTE), NLP Group of The University of Hong Kong (Instructor), and Jina, among many others.

Conclusion

What a journey! We just went from 0 to 1 in sentence embeddings. We learned about what they are,

how to compute them, how to compare them, and how to scale them. We also saw some cool

applications of embeddings, such as semantic search and paraphrase mining. I hope this blog post gave

you a good understanding of what sentence embeddings are and how to use them. This is the �rst part

of a series. What’s left to learn?

• The role of vector databases

• How to use embeddings for more complex ranking systems

• Topic modeling

• Multimodality

• How to train your own embedding models

• All about RAGs

There will be a time for each of those! For now, I suggest to take a break to check your knowledge.

Don’t hesitate to change the code and play with it! If you like this blog post, don’t hesitate to leave a

GitHub Star or share it!

Knowledge Check

1. What make transformer models more useful than GloVe or Word2Vec for computing embeddings?

2. What is the role of the [CLS]  token in BERT and how does it help for computing sentence

Building on top of embeddings:

Embedding databases

Research

https://integrations.langchain.com/vectorstores
https://integrations.langchain.com/vectorstores
https://github.com/osanseviero/hackerllama
https://github.com/osanseviero/hackerllama
https://github.com/osanseviero/hackerllama
https://github.com/osanseviero/hackerllama


2. What is the role of the [CLS]  token in BERT and how does it help for computing sentence

embeddings?

3. What’s the difference between pooler_output  and the [CLS]  token embedding?

4. What’s the difference between [CLS]  pooling, max pooling, and mean pooling?

5. What is the sequence length limitation of transformer models and how can we work around it?

6. When do we need to normalize the embeddings?

7. Which two vectors would give a cosine similarity of -1? What about 0?

8. Explain the different parameters of the paraphrase_mining  function.

9. How would you choose the best model for your use case?

Resources

Here are some useful resources:

• Sentence Transformers

• Hugging Face Hub

• MTEB Leaderboard

 Report an issue

https://www.sbert.net/
https://www.sbert.net/
https://huggingface.co/models?library=sentence-transformers
https://huggingface.co/models?library=sentence-transformers
https://huggingface.co/blog/mteb
https://huggingface.co/blog/mteb
https://github.com/osanseviero/hackerllama/issues/new
https://github.com/osanseviero/hackerllama/issues/new
https://github.com/osanseviero/hackerllama/issues/new
https://github.com/osanseviero/hackerllama/issues/new
https://github.com/osanseviero/hackerllama/issues/new

